Skip to Main Content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

PhD Measurement and Assessment: PHDMAC710 - Advanced Topics in Generalizability Theory

Course Description

This course lays out the conceptual and statistical foundations of univariate and multivariate generalizability theory. It also provides a detailed coverage of advanced topics in univariate and multivariate generalizability theory. Beginning with single-facet designs, the course progresses through multi-facet universes and G-study designs and random effects D-study designs. Both crossed and nested designs are presented. Advanced topics covered include D-study procedures for situations involving restricted universes of generalization and sampling from finite universes; effects of hidden facets, stratified objects of measurement, cautions regarding reliability of groups means, conditional standard errors of measurement, universe score estimation, and comparison of generalizability theory with other measurement theories. Lab sessions will have students develop data analytic skills using the generalizability theory computer programs, such as GENOVA, urGENOVA, and mGENOVA.