Skip to main content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

PhD Ed. Neuroscience: PHDC740 - Neuroscience: Brain Systems, Behavior and Cognition

Course Description

This course is the first of two on Neuroscience: Brain Systems, Behavior and Cognition. The focus here, is on multidisciplinary approaches and methods pertaining to motor systems, regulatory systems, including metabolic and neuroendocrine, along with development, and neural plasticity. Critical to these themes, is the link between environmental interactions and the biological brain-based changes underlying behavior.

Articles

Andreae, L.C. & Burrone, J. (2018). The role of spontaneous neurotransmission in synapse and circuit development. Journal of Neuroscience Research,96(3),354–9. DOI: 10.1002/jnr.24154

Boczek,E.E. & Alberti, S. (2018). Phase changes in neurotransmission. Science, 361(6402),548-9. DOI: 10.1126/science.aau5477

Kameneva, P. & Adameyko, I. (2019). Recent advances in our understanding of central and peripheral nervous system progenitors, Current Opinion in Cell Biology, 61, 24-30. DOI: 10.1016/j.ceb.2019.07.003

Kaneko, N., Sawada, M. & Sawamoto, K. (2017). Mechanisms of neuronal migration in the adult brain. Journal of Neurochemistry.141(6),835‐47. DOI: 10.1111/jnc.14002

Roux, F. E., Djidjeli, I., & Durand, J. B. (2018). Functional architecture of the somatosensory homunculus detected by electrostimulation. The Journal of Physiology, 596(5), 941– 56. DOI: 10.1113/JP275243

Patton, M.H., Blundon, J.A. & Zakharenko S.S. (2019). Rejuvenation of plasticity in the brain: opening the critical period. Current Opinion in Neurobiology, 54,83‐9. DOI: 10.1016/j.conb.2018.09.003

Mateos-Aparicio, P. & Rodríguez-Moreno, A. (2019). The Impact of Studying Brain Plasticity. Frontiers in Cellular Neuroscience,13,66-70. DOI: 10.3389/fncel.2019.00066.

Tien, N.& Kerschensteiner, D. (2018). Homeostatic plasticity in neural development. Neural Development, 13,9-15. DOI: 10.1186/s13064- 018-0105.

Mansvelder, H. D., Verhoog, M. B. & Goriounova, N. A. (2019). Synaptic plasticity in human cortical circuits: cellular mechanisms of learning and memory in the human brain? Current Opinion in Neurobiology, 54, 186–93. DOI: 10.1016/j.conb.2018.06.013

Kiiski, H., Bennett, M., Rueda-Delgado, L.M., Farina, F.R., Knight, R.,Boyle, R.,Roddy, D., Grogan,K.,Bramham,J., Kelly, C.& Whelan,R. (2020). EEG spectral power, but not theta/beta ratio, is a neuromarker for adult ADHD. European Journal of Neuroscience,51(10),2095‐109. DOI: 10.1111/ejn.14645 

Clarke, A.R., Barry, R.J., Johnstone, S.J., McCarthy, R.& Selikowitz, M. (2019). EEG development in Attention Deficit Hyperactivity Disorder: From child to adult. Clinical Neurophysiology,130(8),1256-62. DOI: 10.1016/j.clinph.2019.05.001

Leng, G. (2018). The endocrinology of the brain. Endocrine Connections, 7(12),R275‐85. DOI: 10.1530/EC-18-0367 

Le Tissier, P., Campos, P., Lafont, C., Romanò, N., Hodson, D.J. & Mollard, P. (2017). An updated view of hypothalamic-vascularpituitary unit function and plasticity. Nature Reviews Endocrinology,13(5),257‐ 67. DOI: 10.1038/nrendo.2016.193https://www.nature.com/articles/nrendo.2016.193

Tsutsui, K. (2016). How to contribute to the progress of neuroendocrinology: New insights from discovering novel neuropeptides and neurosteroids regulating pituitary and brain functions. General and Comparative Endocrinology, 227,3‐15. DOI: 10.1016/j.ygcen.2015.05.019 

Hoa, O., Lafont, C., Fontanaud, P., Guillou, A., Kemkem, Y., Kineman, R.D., Luque, R.M., Coll,T.F., Tissier,P.L.& Mollard, P. (2019). Imaging and Manipulating Pituitary Function in the Awake Mouse. Endocrinology,160(10),2271‐81. DOI: 10.1210/en.2019- 00297

López-Gambero, A.J., Martínez, F., Salazar, K., Cifuentes, M. & Nualart, F. (2019). Brain Glucose-Sensing Mechanism and Energy Homeostasis. Molecular Neurobiolology,56(2),769- 96. DOI: 10.1007/s12035-018-1099-4 

Von Schnurbein, J., Manzoor, J., Brandt, S., Denzer, F., Kohlsdorf ,K., Fischer-Posovszky, P., Weißenberger, M., Frank-Podlech, S., Mahmood, S.&Wabitsch, M. (2019). Leptin Is Not Essential for Obesity-Associated Hypertension. Obesity Facts,12(4),460‐ 75. DOI: 10.1159/00050131

Challet, E. (2019). The circadian regulation of food intake. Nat Reviews Endocrinolology,15(7):393‐405. DOI: 10.1038/s41574-019- 0210-x -

Park, H.K. & Ahima, R.S. (2015). Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism,64(1),24‐34. DOI: 10.1016/j.metabol.2014.08.004

Escobar, C., Espitia-Bautista, E., Guzmán-Ruiz, M.A., GuerreroVargas, N.N.,Hernández-Navarrete, M.A.,ÁngelesCastellanos, M.,Morales-Pérez, B. & Buijs,R.M. (2020). Chocolate for breakfast prevents circadian desynchrony in experimental models of jet-lag and shift-work. Scientific Reports,10(1),6243. DOI:10.1038/s41598-020-63227-w

Pfeffer, M., Korf, H.W.& Wicht, H. (2018). Synchronizing effects of melatonin on diurnal and circadian rhythms. General and comparative endocrinology 258:215- 21.DOI: 10.1016/j.ygcen.2017.05.013

Karatsoreos, I.N. (2019). Circadian Regulation of the Brain and Behavior: A Neuroendocrine Perspective. Current Topics in Behavioral Neurosciences,43,323‐51. DOI: 10.1007/7854_2019_115

Violanti, J.M., Fekedulegn, D.,Gu,J.K., Allison,P. Mnatsakanova, A.,TinneyZara,C. & Andrew,M.E. (2018). Effort-reward imbalance in police work: associations with the cortisol awakening response, International Archives of Occupational and Environmental Health,91(5):513‐22. DOI: 10.1007/s00420-018-1300-0  

Becker, J.B.& Chartoff, E.(2019). Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology, 44(1),166‐183. DOI: 10.1038/s41386-018-0125-6

Alhadeff,A.L., Goldstein,N., Park,O., Klima,M.L., Vargas,A.& Betley,J.N. (2019). Natural and Drug Rewards Engage Distinct Pathways that Converge on Coordinated Hypothalamic and Reward Circuits. Neuron, 103(5), 891-908. DOI: 10.1016/j.neuron.2019.05.050 -

Borrow, A.P., Stranahan, A.M., Suchecki, D.& Yunes, R. (2016). Neuroendocrine Regulation of Anxiety: Beyond the HypothalamicPituitary-Adrenal Axis. Journal of Neuroendocrinology,28(7),10.1111/jne.12403. DOI:10.1111/jne.12403

Phneah, S.W& Nisar, H. (2017). EEG-based alpha neurofeedback training for mood enhancement. Australasian Physical & Engineering Sciences in Medicine, 40(2),325‐36. DOI: 10.1007/s13246-017-0538-2 -

Thabrew, H., Ruppeldt, P.& Sollers ,J.J. 3rd. (2018). Systematic Review of Biofeedback Interventions for Addressing Anxiety and Depression in Children and Adolescents with Long-Term Physical Conditions. Applied Psychophysiological Biofeedback,43(3),179‐ 92. DOI: 10.1007/s10484-018-9399-z

Brown,C.H., Ludwig,M., Tasker,J.G. & Stern, J.E.(2020). Somato‐ dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. Journal of Neuroendocrinology 32: e12856. DOI: 10.1111/jne.12856 

McEwen, B., Nasca, C. & Gray, J. (2016). Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 41, 3–23. DOI: 10.1038/npp.2015.171

Fuss J, Claro L, Ising M, Wiedemann,B.K., Stalla,G.K.,Briken,P.,Auer,M.K. (2019). Does sex hormone treatment reverse the sex-dependent stress regulation? A longitudinal study on hypothalamus-pituitary-adrenal (HPA) axis activity in transgender individuals. Psychoneuroendocrinology; 104,228‐37. DOI: 10.1016/j.psyneuen.2019.02.023

Bezdek, K. & Telzer, E. (2017). Have No Fear, the Brain is Here! How Your Brain Responds to Stress. Frontiers for Young Minds,5,71. DOI: 10.3389/frym.2017.0007

Badea, A., Ng, K.L., Anderson, R.J., Zhang, J., Miller, M.I. & O'Brien, R.J. (2019). Magnetic resonance imaging of mouse brain networks plasticity following motor learning. PLoS One. 14(5),e0216596. DOI: 10.1371/journal.pone.0216596 -

Hull, C. (2020). Prediction signals in the cerebellum: beyond supervised motor learning. eLife, 9 ,e54073 DOI: 10.7554/eLife.54073

Albergaria, C., Silva, N.T., Pritchett, D.L. & Carey, M.R. (2018). Locomotor activity modulates associative learning in mouse cerebellum. Nature Neuroscience 21,725–35. DOI: 10.1038/s41593- 018-0129-x -

Sokolov, A.A., Miall, R.C. & Richard, B. & Ivry, R.B., (2017). The Cerebellum: Adaptive Prediction for Movement and Cognition. Trends in Cognitive Sciences, 21 ( 5),313-32. DOI: 10.1016/j.tics.2017.02.005

Raghavan, M., Fee, D.& Barkhaus, P.E. (2019). Generation and propagation of the action potential. Handbook of Clinical Neurolology,160,3‐22. DOI: 10.1016/B978-0-444-64032-1.00001-1

Chalchat, E., Piponnier, E., Bontemps, B., Julian, V., Bocock,O., Duclos,M., Ratel,S. & Martin,V.(2019). Characteristics of motor unit recruitment in boys and men at maximal and submaximal force levels. Experimental Brain Research.237(5),1289‐ 302. DOI: 10.1007/s00221-019-05508-z

 

Additional resources

e-Journals

Search: Library Publications
Limit Your Results