Skip to main content
It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.

PhD Ed. Neuroscience: PHDC730 - Neuroscience: Brain Anatomy and Circuits

Course Description

The focus of the Neuroscience: Brain Anatomy and Circuits course is on concepts and mechanisms of neural function, beginning at the earliest cellular levels and expanding towards larger-scale brain function. Various aspects of cellular and molecular function, synaptic transmission, neural dynamics, mechanisms underlying cognition, and perceptual systems, are explored, along with their interactions at various levels to produce behavior. Multiple methodologies and approaches are used to address these issues and obtain a complete picture of brain function across these levels.


 Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.

Lee, A., Fakler, B., Kaczmarek, L. K., & Isom, L. L. (2014). More than a pore: ion channel signaling complexes. Journal of Neuroscience, 34(46), 15159- 15169.

 Albright, T. D., Jessell, T. M., Kandel, E. R., & Posner, M. I. (2000). Neural science: a century of progress and the mysteries that remain. Neuron, 25(1), S1-S55.

Vogel-Ciernia, A., & Wood, M. A. (2014). Neuron-specific chromatin remodeling: a missing link in epigenetic mechanisms underlying synaptic plasticity, memory, and intellectual disability disorders. Neuropharmacology, 80, 18-27.

Bender, A. R., Keresztes, A., Bodammer, N. C., Shing, Y. L., Werkle‐Bergner, M., Daugherty, A. M., ... & Raz, N. (2018). Optimization and validation of automated hippocampal subfield segmentation across the lifespan. Human brain mapping, 39(2), 916-931. 10.1016/j.neuroimage.2018.05.070

Hosch, E. (1973). Natural Categories. Cognitive Psychology 4, 328-350

Bellmund, J. L., Gärdenfors, P., Moser, E. I., & Doeller, C. F. (2018). Navigating cognition: Spatial codes for human thinking. Science, 362(6415).

Vo, V. A., Sprague, T. C., & Serences, J. T. (2017). Spatial tuning shifts increase the discriminability and fidelity of population codes in visual cortex. Journal of Neuroscience, 37(12), 3386-3401. 

Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: spatial navigation and beyond. Nature neuroscience, 20(11), 1504.

Melzack, R. (2008). The future of pain. Nature Reviews Drug Discovery, 7(8), 629-629.

Carreiras, M., Armstrong, B. C., Perea, M., & Frost, R. (2014). The what, when, where, and how of visual word recognition. Trends in cognitive sciences, 18(2), 90-98. 

Goodale MA, Milner AD (1992). Separate visual pathways for perception and action. Trends in Neuroscience. 15 (1), 20–25.

Vinje, W., and J Gallant. (2000). Sparse Coding and Decorrelation in Primary Visual Cortex during Natural Vision. Science, 287, 1273-1276.

Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature reviews neuroscience, 2(3), 194-203. 

Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 4398-4403.

Murthy, V. N. (2011). Olfactory maps in the brain. Annual review of neuroscience, 34, 233-258. 

Rolls, E. T. (2015). Taste, olfactory, and food reward value processing in the brain. Progress in neurobiology, 127, 64-90.

Brand, A., O. Behrend, T. Marquardt, D. McAlpine, and B. Grothe. (2002). Precise inhibition is essential for microsecond interaural time difference coding. Nature, 417, 543-547.


Search: Library Publications
Limit Your Results